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Abstract 

We present a learning based road likelihood computa-
tion method that uses aerial imagery and fuses 
information from several weak features. Our method is 
automatic, robust, and computationally feasible at the 
same time. We use road likelihood to align a color heli-
copter image onto a given street map to find address of 
buildings visible in the image.   

1 Introduction 

Alignment of aerial imagery and street maps is major 
challenge that geographic information systems are facing 
nowadays. In our setup, we want to determine the address 
of a chosen location in an image that is captured from a 
low-flying helicopter. One important application is auto-
matic emergency services e.g. finding the address of a 
building in fire using aerial imagery. Although GPS in-
formation is also available during the flight, it is often 
noisy with an off-set of 20 meters due to the motion of the 
helicopter and limited resolution of the GPS data. There-
fore, additional refinement is necessary using the image 
and available street map using the only mutual features, 
roads, in both image and map as illustrated in Fig.1. Since 
extraction of roads is a time-consuming and it can not be 
performed manually for a real-time system, there is a need 
for automation.  

Several approaches extract road candidates and then 
track roads [1]. One method models the context, such as 
shadows, cars, tree, etc. to improve the extraction of roads 
[2]. Learning methods were introduced as alternative 
automatic method by using grouping of parallel segments 
[3], detecting ridge-like descriptors using multi-scale 
methods [4]. Hough transform for the extraction of cross-
ings [5]. Several methods make use of texture features. 
However, most of the existing approaches are either based 
on the hard heuristics and very specific to the type of the 
input data or not robust towards the various road and im-
aging conditions exist in our application. Note that, it is 
sufficient to obtain road likelihood for each pixel, but not 
to precisely extract roads since such likelihood informa-
tion is all is needed to align the input image to the street 
map.   

To obtain a road likelihood map, we propose an auto-
matic, robust, computationally feasible approach that uses 
low and high level image features. We selected features 
that provide most discriminating information by a learning 
based method, and tested several classifiers to achieve the 
accuracy and computational simplicity at the same time. 
In the following sections, we present these features and 
evaluation of classifiers, and sample results. Our system 
has already implemented as a part of our commercial ae-
rial image analysis product.  

 

 
Figure 1: Alignment requires extraction of roads. 

2 Road Characteristics 

There are several weak cues that indicate roads, how-
ever, they are mostly not sufficient by themselves: 
• Roads have salient edge features caused by lane divid-

ers and intensity discontinuousness between buildings. 
• Edges on the both sides constitute a pipe-line structure. 
• Roads usually have homogeneous local orientation dis-

tributions. 
• Roads are continuous, so are contours. 
• Width is almost constant and has an upper bound. 
• Local curvature changes in a continuous manner except 

at cross-sections. Yet most roads are straight locally.  
• Density of roads is proportional with the surrounding 

context.  
• Road surface texture is different from buildings. 
• Roads have a color range, i.e. they are not green or red.  

 
These cues have advantages and drawbacks. Continu-

ous contours with appropriate curvatures and parallel 
borders indicate roads, but they may fail when edges are 
occluded, shadowed, or simply not visible. While texture 
property may discriminate road regions, depending the 
type of the road (highway, side-street, etc) texture also 
changes. Local orientation is relatively uniform when it is 
compared to non-road areas. However, large open areas, 
large roof-tops may also present such uniform orientation 
distributions which are easily confused with road regions.  

After all, it is not possible to count on a single cue to 
classify road and non-road regions accurately. That is why 
we learn the discriminative features from the data and fuse 
detection results to achieve robustness. 
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3 Features Selection 
To find road likelihood, we compute low-level (gradient, 

etc), mid-level (contour, etc), and high-level-features as 
shown in Fig.2. Then, we fuse the feature responses using 
a classifier that we trained off-line by a set of road and 
non-road ground truth data that consist of more than 1000 
manually marked images. A sample input image is shown 
in Fig.3. Since the computational complexity is an issue, 
we compute our high level features for overlapping win-
dows instead of for all pixels. The size of the windows is 
smaller than the narrowest road. 

Orientation information is involved in many features; 
hence its accuracy is crucial in the entire process. We use 
a robust estimator: First we apply a pixel-wise adaptive 
2-D Gaussian low-pass Wiener filter. The filter uses esti-
mate the gradient mean and standard deviation within 
local windows. We compute horizontal and vertical gra-
dient magnitudes at each pixel in a block, and we apply 
the same 2-D Gaussian low-pass filter to the gradients. 
And, within each block, we aggregate the local orientation. 
Sample orientation results are given in Fig.4, in which we 
plot the normal orientation. 

We use statistical properties of local orientation distri-
bution to determine more complex features. We have 
generated several possible statistical features and ratified 
each feature according to their discriminative power using 
a set of ground truth images. Some of these features in-
volve a histogram of orientation that is quantized into 12 
bins. Some of these features are the maximum of histo-
gram, mean, variance and entropy of the orientation 

distribution within the window, entropy of weighted ori-
entation histogram, convolution of orientation histogram 
with single Gaussian function and dual (located at oppo-
site angles) Gaussian functions. The maximum value of 
local orientation histogram reflects whether a principal 
orientation is existed in local window. A higher value 
means the distribution of the local orientations is more 
uniform. Same is true for entropy and variance. Convolu-
tion indicates the existence of a dominant orientation 
direction. 

Contour-based features (Fig. 5) complement orientation 
based features as they capture more global properties, 
such as continuous edges, parallel lines and relatively 
straight paths. The contour detector works on line images, 
which is constructed using a curvilinear structure estima-
tion method [6]. We remove the contours that are in closed 
curves and shorter in length. It is true that large buildings 
boundary contours can be easily confused with road con-
tours. One simple solution may is to count vertices of 
contour segments with polylines. For contours caused by 
building edges, the number of polygon vertices is usually 
large, while for contours caused by roads the number of 
the vertices of polylines tends to stay small. We observed 
these are the most discriminative contour-based features: 
length, compactness, number of pixels marked as contour  

Figure 4: Local orientation map 

Figure 2: Flow diagram of road likelihood computation 

Figure 3: Yellow lines shows roads to be detected. 

Figure 5: Contours before refinement. 



Table 1. Performance comparison 
 
in a local window, and entropy of contour orientation. 
Since most of the road contours are elongated lines, road 
compactness is relatively low compared to contours 
caused by other edges. Intuitively, contours with slightly 
changing curvatures have low entropies. 

 Color is another weak feature; however, intensity is 
not reliable due to the fact that vehicles and cast shadows 
cause significant changes in road intensity. Chrominance 
gives more information and can be used as a filter to 
eliminate non-road regions such as green fields, red 
roof-tops, blue water bodies, etc. We use two color histo-
grams to keep the color distribution of roads and non-road 
regions. Each color channel has 64-bins. Using ground 
truth images, we train both histograms. 

We tested a set of 24 Gabor filters, 3 spatial frequencies 
and 8 orientations, and used 2nd order complex moments 
to extract orientation independent texture features. In ad-
dition, we computed texture energy. Although texture is an 
important feature for high quality aerial imagery, in a heli-
copter setup where the camera is shaking and significant 
blur exists in the image, the texture is hardly visible and 
accurate. Hough transforms (parameter space transforma-
tions), on the other hand, are popular to detect dominant 
lines. But especially in rural regions, the excessive amount 
of edge and line information disturbs the performance of 
Hough based detectors. Another complication is that roads 
are not globally straight, thus, Hough should be able to 
detect curvatures, which is even less accurate considering 
the computational restrictions of the system. 

We compute the above features and convert them into 
road likelihood maps using nonlinear weighting functions. 
Until now, we analyzed the response of each feature with 
respect to others; next, we combine them into a single 
likelihood map using classifiers to optimize their mutual 
detection results.  

4 Classifiers 

We tested two classifiers: linear and nonlinear. Linear 
classifier is a combination of likelihood maps corre-
sponding to different features. In other words, it finds a 
weight vector such that the inner product of feature vector 
of pixels and weights gives the binary labels of pixels 
provided in ground truth. Basically, we form a very large 
feature matrix in which each column is a feature vector of 
a pixel and multiply it with the weight vector to get the 
label vector. Note that, the feature matrix is already known 
and the label matrix is given by ground truth, and we only 
need to take the pseudo-inverse of the feature matrix and 
multiply it with the label vector to find weight vector. Al-
though this is straightforward, taking pseudo-inverse of a 
very large matrix is not always feasible, partial MSE and 

sub-optimal solutions are needed. Besides, such a linear 
classifier is limited only with the linear combination of 
features. 

We used a multilayer neural network that is trained by 
back-propagation using 13 separate likelihood maps. We 
implemented different network structures and the simplest 
version that has detection performance still as high as the 
more complicated structures was a three layers imple-
mentation; an input layer with 13 nodes, a 20-nodes 
hidden layer and one node output layer.  

5  Experimental Results 

 We set our local feature collecting window as 31x31 
with 5 pixels overlapping on both directions, while the 
overlapping rate can be changed as system input parame-
ter according to the resolution requirement. 

We compared two versions of the presented neural 
network classifiers with a state-of-art lane detector method 
using template matching that was not learning based. One 
version uses 15 features that explained in the previous 
section. After further optimizing, we refine the feature set 
to 10 features. Second classifier does not include features 
such as color, maximum value of histogram, contour 
length, which may be reliable indicators for other type of 
imagery.  

 We trained our classifiers using 20% of the ground 
truth data and tested with the remaining 80% images, thus 
there is no overlap between the training and testing sets.  
We evaluated the performance by correct detection (per-
centage of accurately detected roan and non-r 

 
oad pixels) and false alarm (percentage of miss classi-

fication of roads as non-road and vice-versa) ratios. The 
difference between the threshold and non-threshold is that 
when we evaluated the accuracy for non-threshold version, 
we used all pixels regardless of their spatial energy i.e. a 
mixture of variance of gradient and texture. The threshold 
version performs the same evaluation only on the pixels 
that are salient where the spatial energy is high. We se-
lected pixels that have more than 0.1 energy score (energy 
is normalized between [0-1]). Table.1 shows the compari-
son results. We give samples of road likelihood in Fig. 7. 
As visible, the detection results are very promising, espe-
cially when we consider the wide range of road types 

As visible, we achieved to improve the correct detec-
tion ratio from 31% (lane detector) to 52% while still 
keeping the false alarms less than 10%. This is 21% in-
crease in correct detection and only 2% reduction in the 
false alarm rate.  

The performance evaluation result also indicates using 
any number of features (although they may provide ac-
ceptable results for some input images) is, in fact, not the 
best solution since such features tend to inject noise in the 
classifier. 

6 Conclusions 

In this project, we implement an automatic road extraction 
system by a neural network classifier. We explored several 
statistical features and used a combination of special set of 
most discriminative features. The presented method al-
most doubles the detection accuracy, and our throughout 
experiments prove the effectiveness of the proposed 
learning based method.  

 
METHOD 

Correct 
Detection 

ratio 

False 
Alarm 
ratio 

Lane Detectors (no threshold) 0.1472 0.0290 
Lane Detectors (threshold) 0.3168 0.0700 
15 Features (no threshold) 0.1829 0.0298 
15 Features (threshold) 0.3639 0.0864 
10 features (no threshold) 0.3438 0.0546 
10 features (threshold) 0.5259 0.0937 



One observation from this work is that the blind feature 
selection and letting the classifier to decide the discrimi-
native features by itself does not always provide the best 
solution. Unlike most machine learning tasks in computer 
vision, human expertise plays an important role in appli-
cation specific definition of features. 
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Figure 7: Sample road likelihood maps that will be used in alignment. 


